Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 193(1): 246-258, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37311159

RESUMO

Phytochromes are biliprotein photoreceptors present in plants, algae, certain bacteria, and fungi. Land plant phytochromes use phytochromobilin (PΦB) as the bilin chromophore. Phytochromes of streptophyte algae, the clade within which land plants evolved, employ phycocyanobilin (PCB), leading to a more blue-shifted absorption spectrum. Both chromophores are synthesized by ferredoxin-dependent bilin reductases (FDBRs) starting from biliverdin IXα (BV). In cyanobacteria and chlorophyta, BV is reduced to PCB by the FDBR phycocyanobilin:ferredoxin oxidoreductase (PcyA), whereas, in land plants, BV is reduced to PФB by phytochromobilin synthase (HY2). However, phylogenetic studies suggested the absence of any ortholog of PcyA in streptophyte algae and the presence of only PФB biosynthesis-related genes (HY2). The HY2 of the streptophyte alga Klebsormidium nitens (formerly Klebsormidium flaccidum) has already indirectly been indicated to participate in PCB biosynthesis. Here, we overexpressed and purified a His6-tagged variant of K. nitens HY2 (KflaHY2) in Escherichia coli. Employing anaerobic bilin reductase activity assays and coupled phytochrome assembly assays, we confirmed the product and identified intermediates of the reaction. Site-directed mutagenesis revealed 2 aspartate residues critical for catalysis. While it was not possible to convert KflaHY2 into a PΦB-producing enzyme by simply exchanging the catalytic pair, the biochemical investigation of 2 additional members of the HY2 lineage enabled us to define 2 distinct clades, the PCB-HY2 and the PΦB-HY2 clade. Overall, our study gives insight into the evolution of the HY2 lineage of FDBRs.


Assuntos
Cianobactérias , Fitocromo , Filogenia , Ferredoxinas/genética , Plantas/metabolismo , Pigmentos Biliares/metabolismo , Biliverdina/química , Biliverdina/genética , Biliverdina/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo
2.
J Biotechnol ; 274: 47-53, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29549003

RESUMO

Phycoerythrobilin (PEB) is an open-chain tetrapyrrole derived from heme and plays an important role as light-harvesting pigment in the phycobiliproteins of cyanobacteria and red algae. Furthermore, PEB can also function as an antioxidant with potential use as a natural acid stable food colorant. PEB is not commercially available and large, pure quantities can only be obtained by laborious methanolysis of red algae followed by liquid chromatography. Here we describe an improved method for high yield production and purification of PEB in Escherichia coli via heterologous expression where the two required enzymes heme oxygenase and PEB synthase subsequently convert the substrate heme provided by the host cell. Experiments in shaking flasks resulted in the highest product yield of 680.23 ±â€¯42.75 µg PEB per g cell dry weight, by induction with 0.1 mM IPTG. Scale-up to batch-operated fermentation in a 2 L bioreactor reached product concentrations up to 5.02 mg PEB L-1 by adjustment of aeration, induction time, media composition and supplementation of precursors. A further approach included separation of PEB from developed foam above the culture. This enabled continuous product collection during cultivation and simplified product purification. Produced PEB was validated via UV-vis spectroscopy, high pressure liquid chromatography and mass spectrometry.


Assuntos
Enzimas/genética , Escherichia coli/crescimento & desenvolvimento , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Engenharia de Proteínas
3.
FEBS J ; 285(2): 339-356, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156487

RESUMO

Ferredoxin-dependent bilin reductases (FDBRs) are a class of enzymes reducing the heme metabolite biliverdin IXα (BV) to form open-chain tetrapyrroles used for light-perception and light-harvesting in photosynthetic organisms. Thus far, seven FDBR families have been identified, each catalysing a distinct reaction and either transferring two or four electrons from ferredoxin onto the substrate. The newest addition to the family is PcyX, originally identified from metagenomics data derived from phage. Phylogenetically, PcyA is the closest relative catalysing the reduction of BV to phycocyanobilin. PcyX, however, converts the same substrate to phycoerythrobilin, resembling the reaction catalysed by cyanophage PebS. Within this study, we aimed at understanding the evolution of catalytic activities within FDBRs using PcyX as an example. Additional members of the PcyX clade and a remote member of the PcyA family were investigated to gain insights into catalysis. Biochemical data in combination with the PcyX crystal structure revealed that a conserved aspartate-histidine pair is critical for activity. Interestingly, the same residues are part of a catalytic Asp-His-Glu triad in PcyA, including an additional Glu. While this Glu residue is replaced by Asp in PcyX, it is not involved in catalysis. Substitution back to a Glu failed to convert PcyX to a PcyA. Therefore, the change in regiospecificity is not only caused by individual catalytic amino acid residues. Rather the combination of the architecture of the active site with the positioning of the substrate triggers specific proton transfer yielding the individual phycobilin products. ENZYMES: Suggested EC number for PcyX: 1.3.7.6 DATABASES: The PcyX X-ray structure was deposited in the PDB with the accession code 5OWG.


Assuntos
Bacteriófagos/enzimologia , Pigmentos Biliares/metabolismo , Evolução Molecular , Ferredoxinas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Asparagina/metabolismo , Catálise , Cristalografia por Raios X , Metionina/metabolismo , Mutagênese Sítio-Dirigida , Oceanos e Mares , Oxirredutases/química , Filogenia , Conformação Proteica , Especificidade por Substrato
4.
Environ Microbiol ; 18(12): 4337-4347, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26950653

RESUMO

The pink open-chain tetrapyrrole pigment phycoerythrobilin (PEB) is employed by marine cyanobacteria, red algae and cryptophytes as a light-harvesting chromophore in phycobiliproteins. Genes encoding biosynthesis proteins for PEB have also been discovered in cyanophages, viruses that infect cyanobacteria, and mimic host pigment biosynthesis with the exception of PebS which combines the enzymatic activities of two host enzymes. In this study, we have identified novel members of the PEB biosynthetic enzyme families, heme oxygenases and ferredoxin-dependent bilin reductases. Encoding genes were found in metagenomic datasets and could be traced back to bacteriophage but not cyanophage origin. While the heme oxygenase exhibited standard activity, a new bilin reductase with highest homology to the teal pigment producing enzyme PcyA revealed PEB biosynthetic activity. Although PcyX possesses PebS-like activity both enzymes share only 9% sequence identity and likely catalyze the reaction via two independent mechanisms. Our data point towards the presence of phycobilin biosynthetic genes in phages that probably infect alphaproteobacteria and, therefore, further support a role of phycobilins outside oxygenic phototrophs.


Assuntos
Bacteriófagos/metabolismo , Vias Biossintéticas , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Água do Mar/virologia , Bacteriófagos/classificação , Bacteriófagos/enzimologia , Bacteriófagos/genética , Oceanos e Mares , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...